CIS 6930/4930 Computer and Network Security

Midterm review

About the Test

- This is an open book and open note exam.
- You are allowed to read your textbook and notes during the exam;
- However, you are not allowed to exchange anything with or talk to each other unless you get permission from the instructor.
- You may bring your laptop to the exam but you are not allowed to access to internet during the exam.

Covered Topics

- Lectures 1-9
- Basic Security Concepts
- Introduction to Cryptography
- DES
- Modes of Block Cipher Operations
- Double DES and Triple DES
- Number Theory
- Public Key Cryptography

Type of Questions

- Multiple choices (25\%)
- Simple calculation (25\%)
- Open-ended questions (50\%)

Introduction to Cryptography

- Basic Security Concepts
- Confidentiality, integrity, availability
- Introduction to Cryptography
- Secret key cryptography
- Sender and receiver share the same key
- Applications
- Communication over insecure channel, Secure storage, Authentication, Integrity check

Introduction to Cryptography

- Introduction to Cryptography
- Public key cryptography
- Public key: publicly known
- Private key: kept secret by owner
- Encryption/decryption mode
- How the keys are used?
- Digital signature mode
- How the keys are used?
- Application: Secure communication, secure storage, authentication, digital signature, key exchange

Introduction to Cryptography

- Introduction to Cryptography
- Hash function
- Map a message of arbitrary length to a fixed-length short message
- Desirable properties
- Performance, one-way, weak collision free, strong collision free

DES

- DES
- Parameters
- Block size (input/output 64 bits)
- key size (56 bits)
- number of rounds (16 rounds)
- subkey generalization algorithm
- round function

DES Round: f (Mangler) Function

Input block i

Output block $i+1$
function $f=$ "Mangler"
32-bit half block

32-bit half block

Modes of Block Cipher Operations

- ECB (Electronic Code Book)
- CBC (Cipher Block Chaining Mode)
- OFB (Output Feedback Mode)
- CFB (Cipher Feedback Mode)

Modes of Block Cipher Operations

- Properties of Each Mode
- Chaining dependencies
- Error propagation
- Error recovery

Double DES and Triple DES

- You need to understand how double and triple DES works
- Double DES C=Ek2(Ek1(P))
- Triple DES C = Ek1(Dk2(Ek1(P))
- Meet-in-the-middle attacks
- Operation modes using Triple DES

Number Theory Summary

- Fermat: If p is prime and a is positive integer not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$

Example: 11 is prime, 3 not divisible by 11 , so $3^{11-1}=59049 \equiv 1(\bmod 11)$
Euler: For every a and n that are relatively prime, then $a^{\phi(n)} \equiv 1 \bmod n$
Example: For $\mathrm{a}=3, \mathrm{n}=10$, which relatively prime: $\phi(10)=4,3 \phi(10)=3^{4}=81 \equiv 1 \bmod 10$

Variant: for all a in $Z_{\mathrm{n}}{ }^{*}$, and all non-negative $k, a^{k \phi(n)+1} \equiv a \bmod n$

$$
\text { Example: for } \mathrm{n}=20, \mathrm{a}=7, \phi(\mathrm{n})=8 \text {, and } \mathrm{k}=3: 7^{3 * 8+1} \equiv 7 \bmod 20
$$

Generalized Euler's Theorem: for $n=p q$ (p and q are distinct primes), all a in \boldsymbol{Z}_{n}, and all non-negative $k, a^{k \phi(n)+1} \equiv a \bmod n$

$$
\text { Example: for } \mathrm{n}=15, \mathrm{a}=6, \phi(\mathrm{n})=8 \text {, and } \mathrm{k}=3: 6^{3^{* *} 8+1} \equiv 6 \bmod 15
$$

$x^{y} \bmod n=x^{y} \bmod \phi(n) \bmod n($ foundation for RSA public key cryptographic)

$$
\text { Example: } x=5, y=7, n=6, \phi(6)=2,5^{7} \bmod 6=5^{7 \bmod 2} \bmod 6=5 \bmod 6
$$

Multiplicative Inverses

- Don't always exist!
- Ex.: there is no z such that $6 \times z=1 \bmod 8(m=6$ and $n=8)$

z	0	1	2	3	4	5	6	7	
$6 \times z$	0	6	12	18	24	30	36	42	\ldots
$6 \times z \bmod 8$	0	6	4	2	0	6	4	2	

- An positive integer $m \in Z_{n}$ has a multiplicative inverse $m^{-1} \bmod n \operatorname{iff} \operatorname{gcd}(m, n)=1$, i.e., m and n are relatively prime
\Rightarrow If n is a prime number, then all positive elements in Z_{n} have multiplicative inverses

Finding the Multiplicative Inverse

- Given m and n, how do you find $m^{-1} \bmod n$?
- Extended Euclid's Algorithm exteuclid (m,n): $m^{-1} \bmod n=\mathrm{v}_{\mathrm{n}-1}$
- if $\operatorname{gcd}(m, n) \neq 1$ there is no multiplicative inverse $m^{-1} \bmod n$

Example

\boldsymbol{x}	\boldsymbol{q}_{x}	r_{x}	u_{x}	v_{x}
0		35	1	0
1		12	0	1
2	2	11	1	-2
3	1	1	-1	3
4	11	0	12	-35
$\operatorname{gcd}(35,12)=1=-1 * 35+3 * 12$ $12^{-1} \bmod 35=3$ (i.e., $12 * 3 \bmod 35=1$)				

Discrete Logarithms

- For a primitive root a of a number p, where $a^{i} \bmod p=b$, for some $0 \leq i \leq p-1$
- the exponent i is referred to as the discrete logarithm of b to the base $a, \bmod p$
- Given a, i, and p, computing $\mathrm{b}=\mathrm{a}^{i} \bmod p$ is straightforward
- Given a, p, and b, computing the discrete logarithm i is hard. The common method is the brute force method.

\boldsymbol{i}	1	2	3	4	5	6	7	8	9
$3^{i} \bmod 7$	3	2	6	4	5	1	3	2	6

Public Key Cryptography

- RSA Algorithm
- Basis: factorization of large numbers is hard
- Variable key length (1024 bits or greater)
- Variable plaintext block size
- plaintext block size must be smaller than key size
- ciphertext block size is same as key size

Generating a Public/Private Key Pair

- Find large primes p and q
- Let $n=p^{*} q$
- do not disclose p and q !
- $\quad \phi(n)=(p-1)^{*}(q-1)$
- Choose an e that is relatively prime to $\phi(n)$
- public key = <e, n>
- Find $d=$ multiplicative inverse of $e \bmod \phi(n)$ (i.e., $\left.e^{*} d=1 \bmod \phi(n)\right)$
- private key = <d, n>

RSA Operations

- For plaintext message \boldsymbol{m} and ciphertext \boldsymbol{c}

Encryption: $\boldsymbol{c}=\boldsymbol{m}^{e} \bmod \boldsymbol{n}, m<n$
Decryption: $\boldsymbol{m}=\boldsymbol{c}^{d} \bmod \boldsymbol{n}$

Signing: $\boldsymbol{S}=\boldsymbol{m}^{d} \bmod \boldsymbol{n}, m<n$
Verification: $\boldsymbol{m}=\boldsymbol{s}^{\boldsymbol{e}} \bmod \boldsymbol{n}$

