CIS 6930/4930 Computer and Network Security

Midterm review

About the Test

- This is an open book and open note exam.
 - You are allowed to read your textbook and notes during the exam;
 - However, you are not allowed to exchange anything with or talk to each other unless you get permission from the instructor.
 - You may bring your laptop to the exam but you are not allowed to access to internet during the exam.

Covered Topics

- Lectures 1 9
 - Basic Security Concepts
 - Introduction to Cryptography
 - DES
 - Modes of Block Cipher Operations
 - Double DES and Triple DES
 - Number Theory
 - Public Key Cryptography

Type of Questions

- Multiple choices (25%)
- Simple calculation (25%)
- Open-ended questions (50%)

Introduction to Cryptography

- Basic Security Concepts
 - Confidentiality, integrity, availability
- Introduction to Cryptography
 - Secret key cryptography
 - Sender and receiver share the same key
 - Applications
 - Communication over insecure channel, Secure storage, Authentication, Integrity check

Introduction to Cryptography

- Introduction to Cryptography
 - Public key cryptography
 - Public key: publicly known
 - Private key: kept secret by owner
 - Encryption/decryption mode
 - How the keys are used?
 - Digital signature mode
 - How the keys are used?
 - Application: Secure communication, secure storage, authentication, digital signature, key exchange

Introduction to Cryptography

- Introduction to Cryptography
 - Hash function
 - Map a message of arbitrary length to a fixed-length short message
 - Desirable properties
 - Performance, one-way, weak collision free, strong collision free

DES

- DES
 - Parameters
 - Block size (input/output 64 bits)
 - key size (56 bits)
 - number of rounds (16 rounds)
 - subkey generalization algorithm
 - round function

DES Round: f (Mangler) Function

Modes of Block Cipher Operations

- ECB (Electronic Code Book)
- CBC (Cipher Block Chaining Mode)
- OFB (Output Feedback Mode)
- CFB (Cipher Feedback Mode)

Modes of Block Cipher Operations

- Properties of Each Mode
 - Chaining dependencies
 - Error propagation
 - Error recovery

Double DES and Triple DES

- You need to understand how double and triple DES works
 - Double DES C=Ek2(Ek1(P))
 - Triple DES C = Ek1(Dk2(Ek1(P))
 - Meet-in-the-middle attacks
 - Operation modes using Triple DES

Number Theory Summary

 Fermat: If p is prime and a is positive integer not divisible by p, then a^{p-1} ≡ 1 (mod p)

Example: 11 is prime, 3 not divisible by 11, so $3^{11-1} = 59049 \equiv 1 \pmod{11}$

Euler: For every *a* and *n* that are relatively prime, then $a^{\phi(n)} \equiv 1 \mod n$

Example: For a = 3, n = 10, which relatively prime: $\phi(10) = 4, 3 \phi(10) = 3^4 = 81 \equiv 1 \mod 10$

Variant: for all a in Z_n^* , and all non-negative *k*, $a^{k\phi(n)+1} \equiv a \mod n$

Example: for n = 20, a = 7, $\phi(n) = 8$, and k = 3: $7^{3*8+1} \equiv 7 \mod 20$

Generalized Euler's Theorem: for n = pq (p and q are distinct primes), all a in \mathbb{Z}_n , and all non-negative k, $a^{k\phi(n)+1} \equiv a \mod n$

Example: for n = 15, a = 6, $\phi(n) = 8$, and k = 3: $6^{3*8+1} \equiv 6 \mod 15$

 $x^{y} \mod n = x^{y \mod \phi(n)} \mod n$ (foundation for RSA public key cryptographic)

Example: x = 5, y = 7, n = 6, $\phi(6) = 2$, $5^7 \mod 6 = 5^7 \mod 2 \mod 6 = 5 \mod 6$

Multiplicative Inverses

• Don't always exist!

- Ex.: there is no z such that $6 \times z = 1 \mod 8$ (m = 6 and n=8)

Z	0	1	2	3	4	5	6	7	
б×z	0	6	12	18	24	30	36	42	•
6×z mod 8	0	6	4	2	0	6	4	2	

- An positive integer $m \in \mathbb{Z}_n$ has a multiplicative inverse $m^{-1} \mod n$ iff gcd(m, n) = 1, i.e., m and n are relatively prime
 - \Rightarrow If *n* is a prime number, then all positive elements in \mathbb{Z}_n have multiplicative inverses

Finding the Multiplicative Inverse

- Given m and n, how do you find $m^{-1} \mod n$?
- Extended Euclid's Algorithm
 exteuclid(m,n):
 - $m^{-1} \mod n = \mathbf{v}_{n-1}$
 - if $gcd(m,n) \neq 1$ there is no multiplicative inverse $m^{-1} \mod n$

Example

<i>x</i>	q_x	r _x	<i>u</i> _x	v_x				
0	-	35	1	0				
1	-	12	0	1				
2	2	11	1	-2				
3	1	1	-1	3				
4	11	0	12	-35				
gcd(35,12) = 1 = -1*35 + 3*12 $12^{-1} \mod 35 = 3$ (i.e., 12*3 mod 35 = 1								

Discrete Logarithms

- For a primitive root *a* of a number *p*, where $a^i \mod p = b$, for some $0 \le i \le p-1$
 - the exponent *i* is referred to as the *discrete logarithm of b to the base a, mod p*
 - Given *a*, *i*, and *p*, computing $b = a^i \mod p$ is straightforward
 - Given *a*, *p*, and *b*, computing the discrete logarithm *i* is hard. The common method is the brute force method.

i	1	2	3	4	5	6	7	8	9
3 ⁱ mod 7	3	2	6	4	5	1	3	2	6

Public Key Cryptography

- RSA Algorithm
 - Basis: factorization of large numbers is hard
 - Variable key length (1024 bits or greater)
 - Variable plaintext block size
 - plaintext block size must be smaller than key size
 - ciphertext block size is same as key size

Generating a Public/Private Key Pair

- Find large primes *p* and *q*
- Let $n = p^*q$
 - do not disclose *p* and *q*!
 - $\phi(n) = (p-1)^*(q-1)$
- Choose an *e* that is relatively prime to $\phi(n)$
 - **public** key = <*e*,*n*>
- Find d =multiplicative inverse of $e \mod \phi(n)$ (i.e., $e^*d = 1 \mod \phi(n)$)
 - private key = <d,n>

RSA Operations

• For plaintext message *m* and ciphertext *c*

Encryption:
$$c = m^e \mod n$$
, $m < n$

Decryption:
$$m = c^d \mod n$$

Signing: $S = m^d \mod n$, m < n

Verification: $m = s^e \mod n$